Quantcast
Channel: OpenCV Q&A Forum - RSS feed
Viewing all articles
Browse latest Browse all 41027

@file SURF_FlannMatcher and OpenCV 3.0.0 do not link

$
0
0
Hi I am relatively new to OpenCV. I program C++ in Vis Studio 2013 and use Cuda 6.5. I found FlannMatcher algorithm as presented on OpenCV as a good tool for parts of what I need to do. It took me 3 days to find out how to correct the program found on opencv.org so I could compile it under 3.0.0. Thanks to all of you who contribute with good answers to many peoples questions. Why isn't this good example updated? Now I can compile it, but the linker do not work. One 'specialist' advised to recompile opencv using the additions from opencv_contrib-master. I started this process going through the tutorial on opencv.org. I have come to the part where I shall install Numpy under Python. According to opencv.org I will need this to be able to read the documentation. It crashes all the time and I receive many different error messages that I find many others do as well. **Is there a simpler way to recompile opencv so the new Flannmatcher can link? or do anyone have the binaries needed so I do not need to recompile myself? I would appreciate all the help I can get here!** The changes in the program is that extractor and detector have become pointers and minHessian is double. Ptr detector = SURF::create(minHessian); std::vector keypts; Mat desc; //detector->detectAndCompute(img_1, noArray(), keypts, desc); std::vector keypoints_1, keypoints_2; detector->detectAndCompute(img_1, noArray(), keypoints_1, desc); detector->detectAndCompute(img_2, noArray(), keypoints_2, desc); //SurfDescriptorExtractor extractor; Ptr extractor = SurfFeatureDetector::create(minHessian); Mat descriptors_1, descriptors_2; extractor->compute(img_1, keypoints_1, descriptors_1); extractor->compute(img_2, keypoints_2, descriptors_2); **Listing of the new code** // ConsoleApplication1.cpp : Defines the entry point for the console application. // /** * @file SURF_FlannMatcher * @brief SURF detector + descriptor + FLANN Matcher * @author A. Huaman */ #define _CRT_SECURE_NO_DEPRECATE #pragma warning (disable : 4996) #include "stdafx.h" #include #include #include #include #include "opencv2/core.hpp" #include "opencv2/features2d.hpp" //#include "D:\OpenCV\sources\modules\features2d\include\opencv2/features2d.hpp" #include "opencv2/imgcodecs.hpp" #include "opencv2/highgui.hpp" #include "D:\OpenCV\opencv_contrib-master\modules\xfeatures2d\include\opencv2/xfeatures2d.hpp" #include "D:\OpenCV\opencv_contrib-master\modules\xfeatures2d\include\opencv2\xfeatures2d\nonfree.hpp" using namespace std; using namespace cv; using namespace cv::xfeatures2d; void readme(); /** * @function main * @brief Main function */ int main(int argc, char** argv) { if (argc != 3) { readme(); return -1; } Mat img_1 = imread(argv[1], IMREAD_GRAYSCALE); Mat img_2 = imread(argv[2], IMREAD_GRAYSCALE); if (!img_1.data || !img_2.data) { std::cout << " --(!) Error reading images " << std::endl; return -1; } using namespace cv::xfeatures2d; //Ptr sift = SIFT::create(...); //-- Step 1: Detect the keypoints using SURF Detector //int minHessian = 400; double minHessian = 400.0; //SurfFeatureDetector detector(minHessian); //Ptr detector = SurfFeatureDetector::create(minHessian, 4, 3, 0, 0); Ptr detector = SURF::create(minHessian); std::vector keypts; Mat desc; //detector->detectAndCompute(img_1, noArray(), keypts, desc); std::vector keypoints_1, keypoints_2; detector->detectAndCompute(img_1, noArray(), keypoints_1, desc); detector->detectAndCompute(img_2, noArray(), keypoints_2, desc); //detector->detect(img_1, keypoints_1); //detector->detect(img_2, keypoints_2); //-- Step 2: Calculate descriptors (feature vectors) //SurfDescriptorExtractor extractor; Ptr extractor = SurfFeatureDetector::create(minHessian); Mat descriptors_1, descriptors_2; extractor->compute(img_1, keypoints_1, descriptors_1); extractor->compute(img_2, keypoints_2, descriptors_2); //-- Step 3: Matching descriptor vectors using FLANN matcher FlannBasedMatcher matcher; std::vector< DMatch > matches; matcher.match(descriptors_1, descriptors_2, matches); double max_dist = 0; double min_dist = 100; //-- Quick calculation of max and min distances between keypoints for (int i = 0; i < descriptors_1.rows; i++) { double dist = matches[i].distance; if (dist < min_dist) min_dist = dist; if (dist > max_dist) max_dist = dist; } printf("-- Max dist : %f \n", max_dist); printf("-- Min dist : %f \n", min_dist); //-- Draw only "good" matches (i.e. whose distance is less than 2*min_dist, //-- or a small arbitary value ( 0.02 ) in the event that min_dist is very //-- small) //-- PS.- radiusMatch can also be used here. std::vector< DMatch > good_matches; for (int i = 0; i < descriptors_1.rows; i++) { if (matches[i].distance <= max(2 * min_dist, 0.02)) { good_matches.push_back(matches[i]); } } //-- Draw only "good" matches Mat img_matches; drawMatches(img_1, keypoints_1, img_2, keypoints_2, good_matches, img_matches, Scalar::all(-1), Scalar::all(-1), vector(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS); //-- Show detected matches imshow("Good Matches", img_matches); for (int i = 0; i < (int)good_matches.size(); i++) { printf("-- Good Match [%d] Keypoint 1: %d -- Keypoint 2: %d \n", i, good_matches[i].queryIdx, good_matches[i].trainIdx); } waitKey(0); return 0; } /** * @function readme */ void readme() { std::cout << " Usage: ./SURF_FlannMatcher " << std::endl; }

Viewing all articles
Browse latest Browse all 41027

Trending Articles