Quantcast
Channel: OpenCV Q&A Forum - RSS feed
Viewing all articles
Browse latest Browse all 41027

assertion failed

$
0
0
on running this code an assertion failed error occurred on cmd line window OPENCV Error : Assertion Failed in cv::cvtColor,file:C:\(address) #include #include #include "opencv2/core/core.hpp" #include "opencv2/features2d/features2d.hpp" #include "opencv2/highgui/highgui.hpp" #include "opencv2/nonfree/nonfree.hpp" #include "opencv2/calib3d/calib3d.hpp" #include "opencv2/imgproc/imgproc.hpp" using namespace cv; /** @function main */ int main() { // Load the images Mat image1 = imread("scene11.jpeg"); Mat image2 = imread("scene21.jpeg"); Mat gray_image1; Mat gray_image2; // Convert to Grayscale cvtColor(image1, gray_image1, CV_RGB2GRAY); cvtColor(image2, gray_image2, CV_RGB2GRAY); imshow("image1", image2); imshow("image2", image1); if (!gray_image1.data || !gray_image2.data) { std::cout << " --(!) Error reading images " << std::endl; return -1; } //-- Step 1: Detect the keypoints using SURF Detector int minHessian = 400; SurfFeatureDetector detector(minHessian); std::vector< KeyPoint > keypoints_object, keypoints_scene; detector.detect(gray_image1, keypoints_object); detector.detect(gray_image2, keypoints_scene); //-- Step 2: Calculate descriptors (feature vectors) SurfDescriptorExtractor extractor; Mat descriptors_object, descriptors_scene; extractor.compute(gray_image1, keypoints_object, descriptors_object); extractor.compute(gray_image2, keypoints_scene, descriptors_scene); //-- Step 3: Matching descriptor vectors using FLANN matcher FlannBasedMatcher matcher; std::vector< DMatch > matches; matcher.match(descriptors_object, descriptors_scene, matches); double max_dist = 0; double min_dist = 100; //-- Quick calculation of max and min distances between keypoints for (int i = 0; i < descriptors_object.rows; i++) { double dist = matches[i].distance; if (dist < min_dist) min_dist = dist; if (dist > max_dist) max_dist = dist; } printf("-- Max dist : %f \n", max_dist); printf("-- Min dist : %f \n", min_dist); //-- Use only "good" matches (i.e. whose distance is less than 3*min_dist ) std::vector< DMatch > good_matches; for (int i = 0; i < descriptors_object.rows; i++) { if (matches[i].distance < 3 * min_dist) { good_matches.push_back(matches[i]); } } std::vector< Point2f > obj; std::vector< Point2f > scene; for (size_t i = 0; i < good_matches.size(); i++) { //-- Get the keypoints from the good matches obj.push_back(keypoints_object[good_matches[i].queryIdx].pt); scene.push_back(keypoints_scene[good_matches[i].trainIdx].pt); } // Find the Homography Matrix Mat H = findHomography(obj, scene, CV_RANSAC); // Use the Homography Matrix to warp the images cv::Mat result; warpPerspective(image1, result, H, cv::Size(image1.cols + image2.cols, image1.rows)); cv::Mat half(result, cv::Rect(0, 0, image2.cols, image2.rows)); image2.copyTo(half); imshow("Result", result); waitKey(0); return 0; }

Viewing all articles
Browse latest Browse all 41027

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>