Quantcast
Channel: OpenCV Q&A Forum - RSS feed
Viewing all articles
Browse latest Browse all 41027

How cv::meanStdDev works

$
0
0
Hi everyone, I'm porting some parts of OpenCV code to an ActionScript/AIR project. I have to port the function meanStdDev, which, according to the documentation: > calculates the mean and the standard deviation M of array elements independently for each channel (...) The calculated standard deviation is only the diagonal of the complete normalized covariance matrix. I'm not very good at statistics. I know that the standard deviation is the square root of variance, which is calculated subtracting each element from the vector's mean and squaring it; finally, summing all results and dividing by the mean. What I need to know is: how this function calculates the standard deviation? Does anybody could comment this function's code in detail? Here's the code I found on the official GitHub, under modules/core/src/stat.cpp. Thank you very much. void cv::meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv, InputArray _mask ) { CV_OCL_RUN(OCL_PERFORMANCE_CHECK(_src.isUMat()) && _src.dims() <= 2, ocl_meanStdDev(_src, _mean, _sdv, _mask)) Mat src = _src.getMat(), mask = _mask.getMat(); CV_Assert( mask.empty() || mask.type() == CV_8UC1 ); CV_IPP_RUN(IPP_VERSION_MAJOR >= 7, ipp_meanStdDev(src, _mean, _sdv, mask)); int k, cn = src.channels(), depth = src.depth(); SumSqrFunc func = getSumSqrTab(depth); CV_Assert( func != 0 ); const Mat* arrays[] = {&src, &mask, 0}; uchar* ptrs[2]; NAryMatIterator it(arrays, ptrs); int total = (int)it.size, blockSize = total, intSumBlockSize = 0; int j, count = 0, nz0 = 0; AutoBuffer _buf(cn*4); double *s = (double*)_buf, *sq = s + cn; int *sbuf = (int*)s, *sqbuf = (int*)sq; bool blockSum = depth <= CV_16S, blockSqSum = depth <= CV_8S; size_t esz = 0; for( k = 0; k < cn; k++ ) s[k] = sq[k] = 0; if( blockSum ) { intSumBlockSize = 1 << 15; blockSize = std::min(blockSize, intSumBlockSize); sbuf = (int*)(sq + cn); if( blockSqSum ) sqbuf = sbuf + cn; for( k = 0; k < cn; k++ ) sbuf[k] = sqbuf[k] = 0; esz = src.elemSize(); } for( size_t i = 0; i < it.nplanes; i++, ++it ) { for( j = 0; j < total; j += blockSize ) { int bsz = std::min(total - j, blockSize); int nz = func( ptrs[0], ptrs[1], (uchar*)sbuf, (uchar*)sqbuf, bsz, cn ); count += nz; nz0 += nz; if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) ) { for( k = 0; k < cn; k++ ) { s[k] += sbuf[k]; sbuf[k] = 0; } if( blockSqSum ) { for( k = 0; k < cn; k++ ) { sq[k] += sqbuf[k]; sqbuf[k] = 0; } } count = 0; } ptrs[0] += bsz*esz; if( ptrs[1] ) ptrs[1] += bsz; } } double scale = nz0 ? 1./nz0 : 0.; for( k = 0; k < cn; k++ ) { s[k] *= scale; sq[k] = std::sqrt(std::max(sq[k]*scale - s[k]*s[k], 0.)); } for( j = 0; j < 2; j++ ) { const double* sptr = j == 0 ? s : sq; _OutputArray _dst = j == 0 ? _mean : _sdv; if( !_dst.needed() ) continue; if( !_dst.fixedSize() ) _dst.create(cn, 1, CV_64F, -1, true); Mat dst = _dst.getMat(); int dcn = (int)dst.total(); CV_Assert( dst.type() == CV_64F && dst.isContinuous() && (dst.cols == 1 || dst.rows == 1) && dcn >= cn ); double* dptr = dst.ptr(); for( k = 0; k < cn; k++ ) dptr[k] = sptr[k]; for( ; k < dcn; k++ ) dptr[k] = 0; } }

Viewing all articles
Browse latest Browse all 41027

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>